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Cost Analysis 
Statistical Monograph

• Written over the past four years with Anduin 
Touw (Boeing Corporation)

• Inspired by David Lee’s “The Cost Analyst’s 
Companion”

• Greater emphasis on statistical methods for 
learning curves and CERs

• To be published by INFORMS, Topics in 
Operations Research series, 2003
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Questions I Have Been Asked 
As A Book Author

• How many pages is your book?
180 pages

• OK, then, what’s it about?
Statistical Methods for Learning Curves and 
Cost Analysis

• Really, may I have a (free) copy?
No, but it will be priced very reasonably
(well under $50 /copy, in paperback)

• Daddy, are you really smart enough to write a book?
No, David, I’m not
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Statistical Problems in 
Military Cost Analysis

• Marginal cost of a weapon system varies with:
– technical and performance characteristics

• e.g., weight, speed, materials content
– unit number in the production sequence

• “learning”

• Learning curve: relationship between cost and 
sequence number, holding fixed the technical 
and performance characteristics

• Cost estimating relationship (CER): relationship 
between cost and characteristics, holding fixed 
the sequence number (e.g., 100th unit) 
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Learning Curve versus CER:
Two Perspectives
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Data on Sequential 
Production Lots
• We do not typically observe data on 

individual production units
• Instead, we observe data on “lots”

– typically annual lots, though a given lot may 
span several fiscal years start-to-finish

 
Lot number 

 
Lot start 

 
Lot end 

 
Lot size 

Incremental 
lot cost ($M) 

Lot average 
cost ($M) 

1  1  218  218 102.765 0.471 
2  219  1,158  940 212.158 0.226 
3  1,159  3,200  2,042 321.819 0.158 
4  3,201  5,900  2,700 333.720 0.124 
5  5,901  7,591  1,691 212.558 0.126 
6  7,592  10,011  2,420 227.238 0.094 
7  10,012  11,668  1,657 157.912 0.095 
8  11,669  14,436  2,768 171.339 0.062 
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Learning Curve Estimation: 
Lot Midpoint Iteration

• Power-function model for marginal cost:

• Incremental lot cost:

• Lot average cost:
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Lot Midpoint Calculation

• Find the point interior to each lot whose 
marginal cost equals the lot average cost
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Lot Midpoint Iteration

• By the definition of the lot midpoint:

• Take natural logarithms:

• Alternate between these two steps, 
until (hopefully) convergence
– Calculate the midpoint of each lot i
– Run a linear regression on the midpoints, 

for lots 
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Assessment of Lot Midpoint 
Iteration

• Lot-midpoint iteration has no theoretical 
foundation
– There may not be a “root”
– Root may not be unique
– Iteration may not converge to any root
– Does not optimize any continuous function

• Maximize likelihood function
• Minimize sum-of-squares

• Better to use non-linear least squares (NLS)

ConvergenceConvergence
exampleexample
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Confidence band for the 
NLS predictions, using lot 
midpoints as plot points
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Models with Multiplicative 
Error Structures
• The learning curve:

or the CER:
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Minimum Percentage Error 
(MPE) Estimation

• Lee, Book have proposed to minimize the 
sum of percentage errors:

– Estimates are biased, even in very large samples
– Estimates are sensitive to outliers

• Better to use iteratively reweighted least 
squares (IRLS)
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Why MPE is Biased:
Two Perspectives

• If error terms are multiplicative normal, 
then log-likelihood function looks like:

– by dropping the additional term, you shift the 
location of the maximum away from unbiased MLE

• The minimization algorithm is “tempted” to 
minimize the sum of percentage errors by 
inflating the denominator
– model predictions are biased high, particularly 

model intercept
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Monte Carlo Results with 
normally-distributed errors 
Normal errors, T1 = 1.8, b = –0.33 (80% slope), σ = 0.15

Bias in T1
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Sensitivity of Estimators 
to Outliers (t-distribution)
• t-distribution with 3 degrees-of-freedom, 

normalized to have σ = 0.15
• greater probability in the tails ?

more outliers
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Monte Carlo Results with 
t-distributed errors
t-distributed errors, T1 = 1.8, b = –0.33 (80% slope), 
σ = 0.15

Bias in T1
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Theoretical Comparison of 
Estimation Methods

Estimation 
Method

Distributional 
Assumptions

Asymptotic 
Properties

Software 
Availability

Covariance 
Matrix

Lot midpoint 
non-linear least 
squares (NLS)

multiplicative 
model, log-
normal errors

consistent and 
asymptotically 
normal

any statistical 
package;
or manually in Excel 
Solver (but no 
covariance matrix)

automatic in any 
statistical 
package; 
feasible in Excel

Lot-midpoint 
iteration

multiplicative 
model, log-
normal errors

unknown manually in Excel;
programmable in 
SAS

conventional 
formula, an 
underestimate

Minimum percentage 
error (MPE)

multiplicative 
model, finite 
variance

biased and 
inconsistent

Excel Solver;
programmable in 
SAS

unknown

Iteratively 
reweighted 
least squares
(IRLS)

multiplicative 
model, finite 
variance

consistent and 
asymptotically 
normal

some statistical 
packages 
(e.g., SAS);
manually in Excel 
Solver

automatic for 
supporting 
statistical 
packages;
feasible in Excel



Backup slides
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Convergence

• Consider the sequence

• This sequence converges if 

– e.g.,  

– or

• It diverges if

– e.g., 

• Non-linear, multi-variate generalization:
iteration converges if all eigenvalues of Jacobian matrix 
<1 in absolute value

ReturnReturn

2 3, , ,b b b K

1b ≤

( ) ( )2 31 2, 1 2 , 1 2 , 0→K

( ) ( )2 31 2, 1 2 , 1 2 , 1 2 , 1 4, 1 8, 0− − − = − − →K K

1b >
2 32,2 ,2 , → ∞K


